ITU Workshop on “Security Aspects of Blockchain”
(Geneva, Switzerland, 21 March 2017)

Blockchain, cryptography, and consensus

Dr. Christian Cachin
IBM Research - Zurich
www.zurich.ibm.com/~cca/

Geneva, Switzerland, 21 March 2017
Connected markets

- **Networks** connect participants
 - Customers, suppliers, banks, consumers

- **Markets** organize trades
 - Public and private markets

- **Value comes from assets**
 - Physical assets (house, car ...)
 - Virtual assets (bond, patent ...)
 - Services are also assets

- **Transactions** exchange assets
Ledger

- Ledger records all business activity as transactions
 - Databases

- Every market and network defines a ledger

- Ledger records asset transfers between participants

- Problem — (Too) many ledgers
 - Every market has its ledger
 - Every organization has its own ledger
Multiple ledgers

- Every party keeps its own ledger and state
- Problems, incidents, faults
- Diverging ledgers
Blockchain provides one virtual ledger

- One common trusted ledger
- Today often implemented by a centralized intermediary
- Blockchain creates one single ledger for all parties
- Replicated and produced collaboratively
- Trust in ledger from
 - Cryptographic protection
 - Distributed validation

Four elements characterize Blockchain

<table>
<thead>
<tr>
<th>Replicated ledger</th>
<th>Cryptography</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of all transactions</td>
<td>Integrity of ledger</td>
</tr>
<tr>
<td>Append-only with immutable past</td>
<td>Authenticity of transactions</td>
</tr>
<tr>
<td>Distributed and replicated</td>
<td>Privacy of transactions</td>
</tr>
<tr>
<td></td>
<td>Identity of participants</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consensus</th>
<th>Business logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decentralized protocol</td>
<td>Logic embedded in the ledger</td>
</tr>
<tr>
<td>Shared control tolerating disruption</td>
<td>Executed together with transactions</td>
</tr>
<tr>
<td>Transactions validated</td>
<td>From simple "coins" to self-enforcing "smart contracts"</td>
</tr>
</tbody>
</table>

Blockchain simplifies complex transactions

Logistics
- Real-time visibility
- Improved efficiency
- Transparency & verifiability
- Reduced cost

Property records
- Digital but unforgeable
- Fewer disputes
- Transparency & verifiability
- Lower transfer fees

Capital markets
- Faster settlement times
- Increased credit availability
- Transparency & verifiability
- No reconciliation cost

Why blockchain now?

- Cryptography has been a key technology in the financial world for decades
 - Payment networks, ATM security, smart cards, online banking ...

- Trust model of (financial) business has not changed
 - Trusted intermediary needed for exchange among non-trusting partners
 - Today cryptography mostly secures point-to-point interactions

- Bitcoin started in 2009
 - Embodies only cryptography of 1990s and earlier
 - First prominent use of cryptography for a new trust model (= trust no entity)

- The promise of Blockchain – Reduce trust and replace it by technology
 - Exploit advanced cryptographic techniques
What is a blockchain?
A state machine

- **Functionality F**
 - Operation o transforms a state s to new state s' and may generate a response r

 $$(s', r) \leftarrow F(s, o)$$

- **Validation condition**
 - Operation needs to be valid, in current state, according to a predicate $P()$

 $$P(s, o) = \text{TRUE}$$
Blockchain state machine

- Append-only log
 - Every operation \(o \) appends a "block" of valid transactions (tx) to the log
 \[
 h_0 \leftarrow \text{Hash}([tx_1, tx_2, ...] || h_{t-1} || t) .
 \]

- Log content is verifiable from the most recent element

- Log entries form a hash chain
Example – The Bitcoin state machine

▪ Bitcoins are unforgeable bitstrings
 – "Mined" by the protocol itself (see later)

▪ Digital signature keys (ECDSA) own and transfer bitcoins
 – Owners are pseudonymous, e.g., 3JDs4hAZeKE7vER2YvmH4yTMDEfoA1trnC

▪ Every transaction transfers a bitcoin (fraction) from current to next owner
 – "This bitcoin now belongs to 3JDs..." signed by the key of current owner
 – (Flow linkable by protocol, and not anonymous when converted to real-world assets)

▪ Validation is based on the global history of past transactions
 – Signer has received the bitcoin before
 – Signer has not yet spent the bitcoin

Distributed p2p protocol to create a ledger

Nodes run a protocol to construct the ledger

Nodes produce transactions
Blockchain protocol features

- Only "valid" operations (transactions) are "executed"

- Transactions can be simple
 - Bitcoin tx are statement of ownership for coins, digitally signed
 "This bitcoin now belongs to K2" signed by K1

- Transactions can be arbitrary code (smart contracts)
 - Embody logic that responds to events (on blockchain) and may transfer assets in response
 - Auctions, elections, investment decisions, blackmail ...
Consensus
Decentralized – Nakamoto consensus/Bitcoin

- Nodes prepare blocks
 - List of transactions (tx)
 - All tx valid

- Lottery race
 - Solves a hard puzzle
 - Selects a random winner/leader
 - Winner's operation/ block is executed and "mines" a coin

- All nodes verify and validate new block
 - "Longest" chain wins

Decentralized = permissionless

- Survives censorship and suppression
 - No central entity

- Nakamoto consensus requires proof-of-work (PoW)
 - Original intent: one CPU, one vote
 - Majority of hashing power controls network
 - Gives economic incentive to participate (solution to PoW is a newly "mined" Bitcoin)

- Today, total hashing work consumes a lot of electricity
 - Estimates vary, 250-1000MW, from a major city to a small country ...

- Protocol features
 - Stability is a tradeoff between dissemination of new block (10s-20s) and mining rate (new block on average every 10min)
 - Decisions are not final ("wait until chain is 6 blocks longer before a tx is confirmed")
Decentralized – deployment

- **Bitcoin**
 - Many (100s? 1000s?) of alt-coins and blockchains

- **Ethereum**
 - First digital currency with general-purpose smart contract execution

- **Sawtooth ledger** (Intel contribution to Hyperledger)
 - **PoET consensus** (proof of elapsed time)
 - Nodes run PoET program in "trusted execution environment" (Intel SGX)
 - PoET waits a random amount of time (say, $E[\text{wait}] = 10\text{min}$)
 - Creates an attested proof of elapsed time
 - Rest like in Bitcoin protocol
Consortium consensus (BFT, Hyperledger)

- Designated set of homogeneous validator nodes

- BFT/Byzantine agreement
 - Tolerates \(f \text{-out-of-} n \) faulty/adversarial nodes
 - Generalized quorums

- Tx sent to consensus nodes

- Consensus validates tx, decides, and disseminates result

Consortium consensus = permissioned

- Central entity controls group membership
 - Dynamic membership changes in protocol
 - Membership may be decided inline, by protocol itself

- Well-understood problem in distributed computing
 - BFT and consensus studied since ca. 1985
 - Clear assumptions and top-down design
 - 700 protocols and counting [AGK+15]
 - Textbooks [CGR11]
 - Open-source implementations (BFT-SMaRT)
 - Many systems already provide crash tolerant consensus (Chubby, Zookeeper, etcd ...)
 - Requires $\Omega(n^2)$ communication (OK for 10-100 nodes, not > 1000s)

- Revival of research in BFT protocols
 - Focus on scalability and communication efficiency

Consortium consensus – under development

- **Hyperledger fabric (IBM's contribution to Hyperledger)**
 - Includes PBFT protocol [CL02]

- **Tendermint, Juno/Kadena, JPMC Quorum, Axoni, Iroha, Chain and others**

- **HoneyBadgerBFT [MXC+16]**
 - Revisits practical randomized BFT [CKPS01], including amortization

- **Many existing BFT libraries predate blockchain**
 - BFT-SMaRT, Univ. Lisbon (github.com/bft-smart/library)
 - Prime, Johns Hopkins Univ. (www.dsn.jhu.edu/byzrep/prime.html)

Scalability–performance tradeoff

Validation
Validation of transactions – PoW protocols

- Recall validation predicate P on state s and operation o: $P(s, o)$

- When constructing a block, the node
 - Validates all contained tx
 - Decides on an ordering within block

- When a new block is propagated, all nodes must validate the block and its tx
 - Simple for Bitcoin – verify digital signatures and that coins are unspent
 - More complex and costly for Ethereum – re-run all the smart-contract code

- Validation can be expensive
 - Bitcoin blockchain contains the log of all tx – 97GB as of 1/2017
 (https://blockchain.info/charts/blocks-size)
Validation of transactions – BFT protocols

▷ Properties of ordinary Byzantine consensus
 – Weak Validity: Suppose all nodes are correct: if all propose \(v \), then a node may only decide \(v \); if a node decides \(v \), then \(v \) was proposed by some node.
 – Agreement: No two correct nodes decide differently.
 – Termination: Every correct node eventually decides.

▷ Standard validity notions do not connect to the application!

▷ Need validity anchored at external predicate [CKPS01]
 – External validity: Given predicate \(P \), known to every node, if a correct node decides \(v \), then \(P(v) \); additionally, \(v \) was proposed by some node.
 – Can be implemented with digital signatures on input tx

Public validation vs. private state

‣ So far everything on blockchain is public – where is privacy?

‣ Use cryptography – keep state "off-chain" and produce verifiable tx

 – In Bitcoin, verification is a digital signature by key that owns coin

 – In ZeroCash [BCG+14], blockchain holds committed coins and transfers use zero-knowledge proofs (zk-SNARKS) validated by P

 – Hawk [KMS+16] uses verifiable computation (VC)
 • Computation using VC performed off-chain by involved parties
 • P checks correctness of proof for VC

‣ Private computation requires additional assumption (MPC, trusted HW ...)
Security and privacy

- **Transactional privacy**
 - Anonymity or pseudonymity through cryptographic tools
 - Some is feasible today (e.g., anonymous credentials in IBM Identity Mixer)

- **Contract privacy**
 - Distributed secure cryptographic computation on encrypted data

- **Accountability & non-repudiation**
 - Identity and cryptographic signatures

- **Auditability & transparency**
 - Cryptographic hash chain

- **Many of these need advanced cryptographic protocols**
Hyperledger project

- Open-source collaboration under Linux Foundation
 - www.hyperledger.org
 - Hyperledger unites industry leaders to advance blockchain technology (Dec. '15)
 - 100 members in Jan. '17

- Develops enterprise-grade, open-source distributed ledger technology

- Code contributions from several members

- Fabric is the IBM-started contribution – github.com/hyperledger/fabric/
 - Security architecture and consensus protocols from IBM Research - Zurich

<table>
<thead>
<tr>
<th>PREMIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accenture</td>
</tr>
<tr>
<td>CME Group</td>
</tr>
<tr>
<td>Deutsche Börse Group</td>
</tr>
<tr>
<td>Digital Asset</td>
</tr>
<tr>
<td>DTCC</td>
</tr>
<tr>
<td>Fujitsu</td>
</tr>
<tr>
<td>Hitachi</td>
</tr>
<tr>
<td>IBM</td>
</tr>
<tr>
<td>Intel</td>
</tr>
<tr>
<td>J.P. Morgan</td>
</tr>
<tr>
<td>R3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GENERAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABN AMRO</td>
</tr>
<tr>
<td>ANZ</td>
</tr>
<tr>
<td>AutoArgo</td>
</tr>
<tr>
<td>BLOX</td>
</tr>
<tr>
<td>Blockstream</td>
</tr>
<tr>
<td>BNY Mellon</td>
</tr>
<tr>
<td>Broadridge</td>
</tr>
<tr>
<td>Calastone</td>
</tr>
<tr>
<td>Cisco</td>
</tr>
<tr>
<td>Cloudsoft</td>
</tr>
<tr>
<td>CLS</td>
</tr>
<tr>
<td>Coinplug</td>
</tr>
<tr>
<td>ConsenSys</td>
</tr>
<tr>
<td>CREDITS</td>
</tr>
<tr>
<td>Cuscal</td>
</tr>
<tr>
<td>Dash</td>
</tr>
<tr>
<td>E輯ue</td>
</tr>
<tr>
<td>Eris</td>
</tr>
<tr>
<td>Guardtime</td>
</tr>
<tr>
<td>Intellect21</td>
</tr>
<tr>
<td>Inv screened2</td>
</tr>
<tr>
<td>ItBit</td>
</tr>
<tr>
<td>Milligan Partners</td>
</tr>
<tr>
<td>MonetaGo</td>
</tr>
<tr>
<td>NEM</td>
</tr>
<tr>
<td>Norbloc</td>
</tr>
<tr>
<td>NTT DATA</td>
</tr>
<tr>
<td>Onchain</td>
</tr>
<tr>
<td>Red Hat</td>
</tr>
<tr>
<td>Ribbitme</td>
</tr>
<tr>
<td>Skry</td>
</tr>
<tr>
<td>Soramitsu</td>
</tr>
<tr>
<td>State Street</td>
</tr>
<tr>
<td>Symbiont</td>
</tr>
<tr>
<td>Tangible World</td>
</tr>
<tr>
<td>Thomson Reuters</td>
</tr>
<tr>
<td>VMware</td>
</tr>
</tbody>
</table>
Hyperledger Fabric

- Enterprise-grade consortium blockchain and distributed ledger framework
 - A blockchain implementation in the Hyperledger Project

- Developed open-source, by IBM and others (DAH, LSEG ...)
 - github.com/hyperledger/fabric
 - Initially called 'openblockchain' and donated by IBM to Hyperledger project
 - Actively developed, IBM and IBM Zurich play key roles

- Technical details
 - Implemented in GO
 - Runs smart contracts ("chaincode") within Docker containers
 - Implements consortium blockchain using traditional consensus (BFT, Paxos)
Hyperledger Fabric details (V0.6)

- **Peers (validating peers and non-validating peers)**
 - GO and other languages, gRPC over HTTP/2
 - Validating peers (all running consensus) and non-validating peers

- **Membership service** issues identity-certificates and transaction-certificates

- **Transactions**
 - **Deploy** new chaincode / **Invoke** an operation / **Read** state
 - Chaincode is arbitrary GO program running in a Docker container

- **State is a key-value store** (RocksDB)
 - Put, get ... no other state must be held in chaincode
 - Non-validating peers store state and execute transactions

Hash chain computed over state (and possibly transactions)
Towards Hyperledger Fabric V1

- **Separate the functions of nodes into endorsers and consensus nodes**
 - Every chaincode may have different endorsers
 - Endorsers have state, run tx, and validate tx for their chaincode
 - Chaincode specifies endorsement policy
 - Consensus nodes order endorsed and already-validated tx
 - All peers apply all state changes in order, only for properly endorsed tx

- **Functions as replicated database maintained by peers** [PWSKA00, KJP10]
 - Replication via (BFT) atomic broadcast in consensus
 - Endorsement protects against unauthorized updates

- **Scales better** – only few nodes execute, independent computations in parallel

- **Permits some confidential data** on blockchain via partitioning state
 - Data seen only by endorsers assigned to run that chaincode
Separation of endorsement from consensus

- Validation is by chaincode
- Dedicated endorsers per chaincode
- Consensus service
 - Only communication
 - Pub/sub messaging
 - Ordering for endorsed tx
- State and hash chain are common
 - State may be encrypted

Transactions in Fabric V1

- **Client**
 - Produces a tx (operation) for *some chaincode* (smart contract)

- **Submitter peer**
 - Execute/simulates tx with *chaincode*
 - Records state values accessed, but does **not** change state → *readset/writeset*

- **Endorsing peer**
 - Re-executes tx with *chaincode* and verifies *readset/writeset*
 - Endorses tx with a signature on *readset/writeset*

- **Consensus service**
 - Orders the endorsed tx, produces ordered stream of tx
 - Filters out the not properly endorsed tx, according to *chaincode endorsement policy*

- **All peers**
 - Disseminate tx from consensus service with p2p communication (gossip)
 - Execute state changes from *readset/writeset* of valid tx, in order
Modular consensus in Fabric V1

‣ "Solo orderer"
 – One host only, acting as specification during development (ideal functionality)

‣ Apache Kafka, a distributed pub/sub streaming platform
 – Tolerates crashes among member nodes, has Apache Zookeeper
 – Focus on high throughput

‣ SBFT - A simple implementation of Practical Byzantine Fault Tolerance (PBFT)
 – Tolerates f < n/3 Byzantine faulty nodes among n
 – Focus on resilience

Conclusion
Conclusion

‣ Blockchain enables new trust models

‣ Many interesting technologies
 – Distributed computing for consensus
 – Cryptography for integrity, privacy, anonymity

‣ We are only at the beginning

‣ Blockchain = Distributing trust over the Internet

 – www.hyperledger.org